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FIGURE 2. Normalized buoyancy flux us. buoyancy time for three different stratification 
strengths: 0 ,  N =  3.06; A, 2.53; 0, 1.25rad/s (from Thoroddsen & Van Atta 1992). 
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FIGURE 3. Flatness factors of temperature fluctuations (open symbols) and streamwise 
temperature-gradient fluctuations (filled symbols) us. downstream distance for N = 1.25 (a), 2.53 
(A), 3.06 (0) and 4.03 rad/s ( x ). The 0 points are clustered around the Gaussian value of 3, while 
the results for aO/az show much larger F .  

x (m) 

times (Nt/2x 2 0.3)  the stirring is strongly inhibited. The time t represents here the 
evolution time from the grid, i.e. x /U.  The initial passive scalar behaviour can be 
used as a reference for the importance of buoyancy in what follows. 

The flatness factors of a random variable emphasize the spread of its probability 
density tails. Figure 3 shows the flatness factors of the temperature fluctuations and 
their streamwise gradients. The flatness of 8 is consistently close to the Gaussian 
value of 3, but the flatness of M/ax deviates sharply from the Gaussian value, 
becoming as large as 9 closest to the grid, but then decreases monotonically 
downstream. 

3.2. Probability density functions of 8 and a8/ax 
The probability density functions were computed for the temperature and its 
gradients. In what follows the PDFs have been normalized in r.m.s. units to facilitate 
comparisons between the results for different stratification strengths, i.e. 
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FIGURE 4. PDFs of temperature fluctuations, 0, at many streamwise locations from 
the grid, for ( a )  N = 1.25 rad/s and ( b )  N = 4.03 rad/s. 

where a* is the measured temperature fluctuation, 0, or its gradients aO/ax and a8la.z. 
For exponential behaviour of the probability density tails, i.e. 

P(a)  cc ePDlal, (1)  

the tails will be linear on a log-linear plot of P ws. a. 
The temperature fluctuations, for all values of N ,  show close to Gaussian 

behaviour, with the data for the three weaker stratifications approaching the closest 
to the Gaussian curve. Figure 4 shows the PDFs for many downstream locations 
from the grid, forN = 1.25 and 4.0 rad/s. The data points follow closely the Gaussian 
curve for all downstream locations for N = 1.25 as well as 2.5 and 3.0 rad/s (not 
shown here). For the strongest stratification, N = 4.0 rad/s, the correspondence with 
a Gaussian is not quite as good. This may be due to slight deviations from linearity 
of the mean temperature gradient peculiar to the N = 4.0 rad/s case. For this 
stratification strength the linear section of the mean temperature profile extended 
only 3 grid mesh sizes (7.6 cm) in the vertical direction at the tunnel centreline, 
whereas for the other values of N the linear section covered almost the full height of 
the tunnel. None of the &distributions exhibit exponential tails. 

In sharp contrast with the near-Gaussian behaviour of the temperature 
fluctuations, the probability densities of the streamwise gradients of the temperature 
exhibit strongly exponential behaviour, as shown in figure 5 for the locations closest 
to the grid where the turbulence is most vigorous. For N = 2.53 rad/s the exponential 
tails extend over almost all of the parameter range. The distributions for N = 1.25 
and 3.0rad/s (not shown here) look identical. The distribution for the strongest 
stratification, shown in figure 5(b), differs somewhat from the other cases, showing 
an extruded peak for small absolute values. Similar peaky probability distribution 
shapes have been noted for scalar and velocity gradients in experimental and 
computational studies by Van Atta & Chen (1970), Antonia et al. (1984), She (1991) 
and Balachandar & Sirovich (1991). A related kind of peaky distribution shape has 
also been derived for 8 from numerical studies of Lagrangian turbulence in simple 
deterministic flows by Goldhirsch & Yakhot (1990). 

Further downstream, as the turbulence decays away from the grid, the tails grow 
progressively steeper, but retain their exponential behaviour, even a t  the largest 
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FIGURE 5. PDFs of M/ax at the streamwise location closest to the grid, for (a) N = 2.53 
and (b) N = 4.03 rad/s. 
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FIGURE 6. Downstream development of the PDF of aO/ax for N = 2.5 rad/s for ( a )  x/M = 60 
and (b) 145. Figure 5(a )  shows corresponding PDF for x / M  = 10. 

z-values, as is shown by comparing figures 5(a)  and 6(a ,  b) for the N = 2.5 rad/s 
stratification. The results for other N ,  not shown here, are very similar. For small 
absolute values the distribution widens. 

3.3. Downstream development of the tail steepness 
Least-square linear fits to the probability density tails, shown in the previous 
section, were computed to investigate the changes in the normalized steepness, D in 
(l), with the turbulent decay and the changes in stratification. Figure 7 shows the 
slopes plotted vs. evolution time x / U  for all stratifications. The slope of the tails 
increases downstream, with the tails coming closer to the Gaussian shape, by ‘folding 
onto it’. This ‘folding behaviour’ can be explained by the following argument. The 
largest gradients, forming the extrema of the tails, are associated with the smallest 
scales, i.e. small linear dimensions between two fluid volumes of very different 
temperatures, either due to shear zones at the boundaries of larger colliding eddies 
or wisps of fluid carried far away in the background gradient. These large-gradient 
regions are the regions most strongly affected by the diffusion of the scalar, which 
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FIGURE 7. The PDF slope, D in ( l ) ,  of the exponential tails for aB/az ws. evolution time for 

N =  1.25 (O), 2.53 (A), 3.06 (0) and 4.03rad/s ( x ) .  

selectively eliminates the largest gradient values. This preferential smoothing of the 
smallest scales is not compensated for by scaling the PDF with the r.m.s. since most 
of the contribution to the r.m.s. is associated with larger scales. The lack of strong 
generation of new gradients is an indication of reduction in the nonlinear vertical 
transfer of fluid elements due to reduction in turbulent Reynolds number. Buoyancy 
forces do not affect the steepness directly, as demonstrated by the very similar slope 
development for the widely different stratification strengths represented by the data 
shown in figure 7 .  

Tail slope, D ,  vs. Re, 
To further investigate the evolution ofD with Reynolds number we used data that 

were collected using widely different grid mesh sizes, for a fixed stratification 
strength, N = 2.53 rad/s. The four different grid mesh sizes used were 0.635,1.27,2.54 
and 5.08 cm. The resulting turbulence spanned a wide range of turbulent Reynolds 
numbers, defined as 

Re,, = u'h/v, 

where the lengthscale h is the Taylor microscale. For these experiments the cold wire 
was vertically oriented. Since the PDFs for M/ax show small skewness, the average 
of D from both the positive and negative tails was used. 

Dimensional analysis (Tennekes & Lumley 1972) suggests that the turbulent 
Reynolds number should be constant for grid turbulence irrespective of the 
streamwise location, but in practice Re, is largest close to the grid and then 
diminishes rapidly to an approximately constant level farther downstream. This 
produces the range of Re, for each mesh size, as shown in figure 8, which shows D for 
all mesh sizes and all downstream locations. For comparison the figure also contains 
an approximate estimate of the slope observed by Antonia et al. (1984) for flow of 
much larger Reynolds number in a heated jet, which yields a significantly smaller 
values of D. The data in figure 8 follow fairly well the relation 

D ci Re,;. (2) 

The data of Van Atta & Chen (1970) for &/ax in high-Reynolds-number atmospheric 
turbulence similarly showed D-values of approximately 0.5. The lower D-values 
associated with increased Re, are due to the increased intermittency for the higher- 
Reynolds-number turbulence, as is demonstrated by increased flatness factors, see 
Van Atta & Antonia (1980). A purely exponential distribution has a flatness factor 
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FIQURE 8. Tail steepness D for a wide range of turbulent Reynolds number. The data were all for 
N = 2.53 rad/s and represent different grid mesh sizes, M = 0.635 (a), 1.27 (A), 2.54 (0) and 
5.08 cm ( x ) ; +, shows the slope obtained from figure 1 in Antonia et al. (1984) for a high-Reynolds- 
number heated jet. 

a 
FIQURE 9. PDFs of aO/ax for the two extremes in the Re,-range shown in figure 8, 

Re, = 41 (*) and 5 (+).  

of 6, but as shown in figures 3 and 5 ( b ) ,  the higher flatness factors, at larger Reynolds 
numbers, are associated with a break in the PDF shape, leading to the pointed centre 
part and more extended tails. 

Figure 9 illustrates this change in the PDF shape, showing the PDFs for the largest 
and smallest Re,. The larger the Reynolds number the more extended the tails of the 
distribution, as discussed above. This is demonstrated even more dramatically by the 
PDF shown in Antonia et al. (1984). Figure 9 clearly demonstrates the persistence of 
the exponential tails for both the widest and tightest skirts. The difference in shapes 
is due to the difference in the ratio of the turbulent integral scale to the Batchelor 
lengthscale, which scales as Pei, where Pe is the PBclet number. This affects the 
competition between diffusion and nonlinear energy transfer. The PBclet number 
scales linearly with the Reynolds numbers in our case, due to the constant molecular 
transport coefficients. It could thus replace Re in the forgoing arguments. 
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FIGURE 10. PDF of aO/az closest to the grid for N = 2.53 rad/s. The broken line 
shows the Gaussian PDF. 
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FIGURE 11. The downstream development of the aO/az PDF, N = 1.25 rad/s. The wider tail 
steepens and the skewness diminishes downstream. 

3.4. PDF and skewness of a6la.z 
The PDFs of the fluctuating vertical gradients of 8 are also strongly exponential, as 
shown in figure 10. In contrast with the relatively small skewness of ae/ax the 
distribution of ae/az is very strongly skewed. In  figure 10 the data are compared with 
the Gaussian distribution to emphasize the strength of the skewness. The skewness 
of CM/az is strong and positive for all N and diminishes downstream with similar 
retention of the exponential tail shapes as for aO/ax. Figure 11 shows the changes in 
the PDF for a few downstream locations. The wider skirt for positive gradient shows 
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FIGURE 12. Skewness of M / a z  us. downstream location for N = 1.25 (a), 2.53 (A), 

3.06 (0) and 4.03 rad/s ( x ). 
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FIGURE 13. Tail slopes of M/az,  D, (0)  and D- ( x ) us. X for many N .  
x (4 

stronger decay, as would be expected by enhanced diffusion of the strongest 
gradients. Figure 12 shows the downstream development of the a8/az skewness. The 
skewness decreases strongly during the initial decay but is independent of buoyancy. 

The tail slopes for both sides of the a6'/az PDFs are shown in figure 13. The weaker 
slopes show a systematic steepening vs. x ,  while the slopes on the steeper side remain 
nearly constant and show a larger variation, due in part to the larger uncertainty in 
their determination. 

3.5. PDF of second-order derivatives of 6' 
Figure 14 shows the PDFs of a26'/ax2 and a26'/ax2 for one case in the passive scalar 
regime. The figure also contains the PDF of a8/ax and shows that the second 
derivatives possess wider skirts than the gradient of temperature. The closely 
Gaussian PDF of 8 is also included. Neither the horizontal nor the vertical second 
derivative show any significant skewness. These results are in agreement with those 
of the numerical work by Balachandar & Sirovich (1991). 

3.6. PDF of the buoyancyjiux 
The PDFs of the temperature fluctuations have been shown in previous sections to 
be close to Gaussian and, furthermore, so is the PDF of the vertical velocity 
fluctuations, as shown in figure 15. The probability density of their product w8, i.e. 
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FIGURE 14. PDFs of a20/ax2 (*) and azO/azz  ( + ) for x / M  = 30 and N = 2.53 rad/s. Also included are 
the PDF of 0 falling very close to the Gaussian curve and the PDF of aO/az (-) showing 
exponential tails. 
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FIGURE 15. PDF of vertical velocity fluctuations w for N = 2.5 rad/s at x / M  = 40. 

the instantaneous buoyancy flux P(w0), is shown in figure 16 for the strongly mixing 
regime close to the grid where the buoyancy forces are comparatively small. The 
distribution exhibits exponential tails and is extremely skewed toward negative 
values, corresponding to an overall net normalized flux of a / w 0  = -0.68, with a 
skewness factor of -2.1 and a flatness factor of 11.  The tail slopes D are 0.92 and 

The PDFs of the temperature fluctuations and the vertical velocity fluctuations 
are each close to  Gaussian. It is therefore interesting to see if the behaviour of P(w0) 
can be derived by assuming joint-Gaussian behaviour of the vertical velocity and 
temperature fluctuations. We will here follow the notation of Papoulis (1972) and 

- 3.2. 
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FIGURE Included are t ie 
Gaussian (----) and the predicted shape (-) from (6) using the measured buoyancy flux 
correlation value of r = -0.68. 

PDF of the buoyancy flux corresponding to the PDF of w in figure 

derive the form of the PDF of we. The joint probability density function of two 
jointly Gaussian random variables x and y,  correlated by a correlation coefficient r 
has the following form (Papoulis 1972, p. 183) : 

Let us  now define the buoyancy flux variable, i.e. the product of the two random 
variables, z = xy and look at  its cumulative distribution, 

W )  = s_mm ~ ~ . L , ( x 9  Y) dx dY. 

The PDF of z is the derivative of the cumulative distribution, 

(4) 

Now by substituting for the distribution f,, from (3) and simplifying we obtain 

where w = ~/(a, crJ1 -?)). The integral yields a modified Bessel function of the 
second kind, Ko(w), giving the resulting distribution 

The modified Bessel function KO has a logarithmic singularity at the origin and for 
large x-values its asymptotic behaviour is 
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which produces very close to exponential behaviour. Equation (6), with r = -0.68, 
is compared with the experimental P(w0) in figure 16. The agreement is very good 
except for the largest flux values. For these extreme values, molecular diffusion a t  
the smallest scales may be responsible for decreasing the validity of the joint- 
Gaussian assumption. 

= 1 )  tail slopes on the two sides of the PDF are 
predicted as 

From (6) the normalized (gZ = 

The exponential tails of the buoyancy flux distribution, (6), derived here are a 
consequence simply of the joint-Gaussian statistics of the vertical velocity and 
temperature as the only assumption. The physics of the fluid stirring and mixing 
enters the result by determining the value of r .  

The distribution of (6) strongly resembles the shape obtained by Kraichnan (1990) 
for the PDF of &/ax in a numerical and analytic treatment of ‘turbulence’ in 
Burger’s equation. 

4. Comparison with results of earlier experiments, numerical simulations 
and theoretical models 

4.1. Exponential tails 
As mentioned earlier, the observed near-Gaussianity of the temperature fluctuations 
is not surprising and is consistent with the results of some earlier workers. Here we 
focus our attention on the essentially exponential behaviour of the tails of the PDFs 
of both the horizontal and vertical temperature gradients for both passive and active 
scalar flow regimes. We are aware of no other related experimental results for scalar 
behaviour in decaying homogeneous turbulence. However, MBtais & Lesieur (1992) 
have recently calculated several PDFs for temperature and temperature gradients in 
large-eddy simulations and direct numerical simulations for stratified homogeneous 
decaying turbulence. Their PDFs of temperature fluctuations exhibit weak 
exponential tails, which we do not see in our measurements, while their PDFs of 
temperature gradients exhibit much stronger exponential tails, in agreement with 
our data. 

Earlier passive scalar results in other kinds of flows have shown similar exponential 
behaviour. For a heated turbulent jet (Re, = 850) Antonia et al. (1984) found a PDF 
of temperature close to Gaussian, but the PDF of the temperature differences a t  
closely spaced points exhibited very extended tails. Gollub et al. (1992) found weakly 
exponential tails for temperature, and much stronger exponential tails for 
temperature gradients in a passive grid-stirring experiment. Their experimental set- 
up, however, contained essential inhomogeneities, making it hard to generalize the 
results. 

For convectively driven, active scalar mixing Castaing et al. (1989) observed 
exponential tails in PDFs of temperature fluctuations in the ‘hard turbulence ’ 
regime of BBnard convection, but did not measure temperature gradients. Recently, 
Ching (1991) reports that PDFs of temperature increments in the same flow exhibit 
stretched exponential tails. The numerical simulations of Balachandar & Sirovich 
(1991) for the same regimes of BBnard convection also show strong exponential tails 
for temperature gradients, but were inconclusive about the PDF of the temperature 
due to end effects. 
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No theoretical models have yet appeared for the PDF of the temperature 
gradients, despite a good deal of theoretical activity stimulated by the Castaing et al. 
(1989) results. The heuristic model of Pumir et al. (1991) predicts exponential tails for 
the PDF of temperature, but gives no prediction for the PDFs of temperature 
gradients. Our data and the discussion by Pumir et al. indicate that their model is not 
applicable to the temperature field for our experiment. The heuristic arguments of 
the model cannot in principle be extended to describe the temperature gradient in 
our experiment. The model requires a non-zero value of the mean gradient of the 
variable under consideration, and this is zero for our experiment because of the 
vanishing of the curvature of the mean temperature field, i.e. a2T/az2 = 0. 

The shell model of Jensen et al. (1992) predicts PDFs for the temperature 
increments whose behaviour may approach that of the derivative as the separation 
distance is decreased. As the distance decreases, the tails of their PDFs become 
flatter, in agreement with a few calculations of PDFs of increments we have 
performed. However, there is no indication, in the model results, of an approach to 
exponential behaviour as the separation distance is decreased. 

4.2. The skewness of 30/az 
The skewness of iM/az provides a sensitive test of the validity of theoretical models 
describing turbulent scalar mixing and it is therefore important to quantify. 

Budwig, Tavoularis & Corrsin (1985) have measured similar skewness, in an 
ingenious experiment where they produced the mean temperature gradient by 
passing the flow through a grid periodically heated to produce a thermal ramp in the 
streamwise direction. By differentially heating the grid they could also produce a 
constant transverse temperature gradient. The skewness values thus obtained are 
qualitatively the same as ours, but differ in the sense that their values grow away 
from the grids, opposite to ours which decrease away from the grid. This may be due 
to the difference in heating arrangements used in these two experiments. Budwig 
et al. use two differently sized grids, the first one (M = 2.54 em) to generate the 
turbulent velocity fluctuations and another set of horizontal nicrome wires (at 
x/M = 22) spaced 0.4 em part, used to impart the mean temperature gradient. The 
evolution of the temperature and velocity scales is sensitive to the initial scale ratios 
as shown by Warhaft & Lumley (1978). This may account for the difference in the 
development of the skewness, since in our experiments the velocity and temperature 
fluctuations were generated by the same grid. 

Phenomenological model explaining the positive skewness of aelaz 
We propose a simple phenomenological model to explain the positive skewness of 

ae/az, based on the advection of fluid volumes of relatively uniform temperature 
against the mean temperature gradient. This is illustrated in figure 17, showing how 
two blobs of fluid advected away from their equilibrium locations will introduce 
uneven gradients on their two sides in the following manner. If a blob of fluid finds 
itself in hotter surrounding fluid (0 < 0, for the blob), it is more probable that this 
blob is moving up in the positive z-direction than down in the negative z-direction, 
since the E$-correlation is negative. In  other words, it is most likely that w > 0 since 
0 < 0. But since this fluid blob is (and has been for some correlation time) moving up 
through the fluid, it has stirred and mixed with the fluid just below it,  spreading out 
the effective gradient in its wake more than the gradient in the direction of the 
‘virgin’ fluid that it is entering. The aB/az gradient is thus sharper on the top side 
of the blob. This is shown schematically in figure 17 (a) .  Similarly a fluid blob finding 
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FIGURE 17. Schematic of the simple phenomenological model invoked to explain 
the measured skewness of M / a z .  

itself in colder surrounding fluid (6  > 0)  is most probably moving down (w < 0) in 
accordance with the mean flux as explained above. This will in the same manner 
produce larger gradients on the bottom side of the blob as it moves down into ‘virgin 
fluid’ as shown in figure 17 ( b ) .  Now note that in both of the above-mentioned cases, 
shown in figure 17, the positive ae/az-gradients are larger than the negative ones, 
thus introducing a positive skewness. This simple intuitive model thus provides a 
mechanism biased in favour of larger positive than negative values of aelaz. This 
breaks the symmetry of aB/az and predicts the observed sign of the skewness for that 
quantity, while respecting the following physical properties of the flow : (i) it  retains 
the symmetry of the random advection, i.e. it respects the symmetry and 
homogeneity of w (( W )  = 0)  ; and (ii) gravity has not been included in the argument, 
since buoyancy forces are irrelevant, as is born out by the data. 

The basic argument for this model is based on the w8-correlation. The fact that the 
sign of the skewness is not reversed as the turbulence goes through the restratification 
regime may be explained by the observations of Lienhard & Van Atta (1990) which 
show that while the largest scales are restratifying there are contributions to the flux 
at small scales that still produce down-gradient mixing, supplying the required 
ingredients for the model. The present experiments and model show that the 
skewness of at9laz is an inherent property of random advection in a background mean 
gradient. Notice that the skewness predicted by this model is independent of the 
magnitude of the mean gradient since the local gradient magnitudes introduced by 
advection scale linearly with the mean gradient. Note that this model predicts zero 
skewness for a2€J/az2 consistent with our measurements and the simulations of 
Balachandar & Sirovich (1991). 

The observed reduction in the skewness away from the grid can be explained in the 
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following heuristic manner. Close to the grid it is most likely that the large scales of 
the motion have relatively uniform temperature, since the temperature fluctuations 
are generated by these large-scale motions imparted by the grid. Farther downstream 
the stirring will have convoluted this relation of the large-scale blobs, making the 
blobs a mess of interwoven temperature sheets. 

Previous phenomenological models explaining scalar-gradient skewness are due to 
Tavoularis & Corrsin (1981b), Budwig et al. (1985) and Balachandar & Sirovich 
(1991). Tavoularis & Corrsin (1981 b )  have developed an unified qualitative explanation 
of the skewness of au/ax and aO/all: for linear shear flows with a linear mean 
temperature gradient. Their model is based on the existence of a local stagnation 
region which develops upstream of a fluid ‘lump’ transported in the positive 
direction of the mean shear. This model succeeds in explaining the observed sign of 
the skewness of au/az and aO/ax for the experiments mentioned above. It also 
predicts the sign of the skewness of aO/az for a uniform-gradient shear flow, but it 
predicts erroneously that the skewness of aO/az is zero for the non-sheared case, i.e. 
dU/dz = 0. This model does not invoke mixing or stirring directly, unlike the one we 
suggest. 

Budwig et al. (1985) have extended this model to apply to the temperature- 
gradient skewnesses in their experiments. Their explanations are similar to our model, 
but they do not directly invoke the mixing. In an interesting side note Budwig et al. 
suggest that their essentially two-dimensional model can explain the skewness of 
au/ax, which conventionally is attributed to the three-dimensional mechanism of 
vortex stretching. Tavoularis, Bennett & Corrsin (1978) have shown that the au/az 
skewness reduces sharply for Re, < 4. 

Balachandar & Sirovich (1991) have also noted aO/az skewness in their numerical 
simulations of Rayleigh-BBnard convection. They observed a negative skewness for 
aO/az which is consistent with our model, since their mean temperature gradient 
dT/dz was negative, driving the flow. Sirovich (1987) has shown by use of symmetry 
groups that for the Boussinesq equations aO/az and a28/az2 are not required to have 
zero skewness. Balachandar & Sirovich (1991) have presented a skewness model 
which is similar to ours, in the sense that it is also based on the buoyancy flux 
correlation, but in their case the buoyancy forces drive the flow and their model 
invokes the buoyancy-induced acceleration of fluid particles. The skewness is 
introduced because hot blobs of fluid are accelerated upwards and cold blobs 
downwards. This leads to a ‘peak in their probability distribution at a (small) 
positive value and this peak is compensated by a less steeper negative tail, in order 
to yield zero mean value’. This model thus does not directly explain the large 
negative values of aO/az, but only indirectly through the peak at ‘small’ positive 
values of ae/az. This peak at ‘small’ positive values of aO/az in turn arises due to the 
buoyancy flux correlations. Also, since the buoyancy mechanism is essential, the 
model, like that of Tavoularis & Corrsin (1981 b) ,  does not predict the observed non- 
zero skewness of M / a z  for a passive scalar field. 

Balachandar & Sirovich’s model applies to the observed negative skewness of both 
aw/az and aelaz. It should be pointed out that the negative skewness of aw/az is 
expected for turbulent flows without buoyancy forces, similar to the skewness of 
au/ax. From the arguments above it is clear that the awl&- and aO/az-skewnesses 
observed by Balachandar & Sirovich (1991) can be explained without invoking 
buoyancy forces. 

The very similar absolute values of the normalized buoyancy flux for our 
measurements close to the grid and in the simulated thermal convection suggest 
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similar dynamics of the turbulent flux, despite the essential difference in the driving 
mechanism for the two flows. The basis for our simple model can thus be expected 
to also be applicable to convectively driven flows. 

The Gerz & Schumann ( 1991) pseudo-spectral numerical simulations contain 
extensive information about the skewness of a@/& as well as aw/& and &/ax. They 
attribute the non-zero skewness of a@/az to  nonlinear energy transfer from large to 
small scales, similar to au/ax. For small buoyancy times the computed M / a z  
skewness value is about 1.1, in good agreement with our measured values. The 
skewness then decreases with larger buoyancy times to a minimum of 0.3. The 
passively stratified case shows consistently large skewness, with values as high as 1.5. 
The initial negative skewness of aw/az is similarly reduced to zero due to increased 
buoyancy forces. 

MBtais & Lesieur (1992) attribute similar scalar gradient skewnesses in their 
numerical results to buoyancy forces acting more strongly on the negative gradients 
than on the positive ones, due to the inherent convective instability of the negative 
gradients. They do not explain convincingly why this skewness is largest initially for 
the smallest buoyancy times, where the internal Froude numbers are largest, and 
then subsequently becomes smaller as the relative strength of buoyancy forces 
increases. 

As mentioned above, our experimental results eliminate buoyancy forces as an 
essential cause of this skewness, since the experimentally observed skewness is 
largest close to the grids where buoyancy is weakest and the evolution of the 
skewness is similar irrespective of the value of N over a large range of stratification 
strengths. 

4.3. Skewness of M/ax observed by previous researchers 
Many authors have (when mean velocity shear is present) noted skewness in 
streamwise derivatives of scalar fluctuations in the direction perpendicular to the 
mean scalar gradients, i.e. a@/ax in our experiments. This was found only in the 
presence of mean shear. The scalar is usually temperature in air, thus having the 
same Prandtl numbers as in the current experiments. Such experiments include both 
those in very high-Reynolds-number flows in the atmosphere by Gibson, Stegen & 
Williams (1970), Antonia & Van Atta (1978) and in laboratory flows such as the 
heated boundary-layer experiments of Sreenivasan, Antonia & Danh (1977). Gibson 
Friehe & McConnell (1977) have shown that the sign of the skewness changes with 
the sign of the mean shear. As elucidated by the review of Sreenivasan & Tavoularis 
(1980) the streamwise skewness is non-zero only when both a mean velocity gradient 
and a mean temperature gradient are present. Tavoularis & Corrsin (1981a, b)  have 
further extensively studied the streamwise skewness in shear flows. They derive a 
model to predict the skewness of a@/ax, but their model erroneously predicts that the 
skewness of a@/& x 0  for the limiting case of zero mean shear (dD/dz = 0 )  as 
mentioned earlier. This might point to a hidden flaw in this model or suggest some 
modifications thereto. 

Were one to extend our model to homogeneous shear turbulence (say dU/dz > 0) 
and change the argument to apply to blobs of constant horizontal velocity, instead 
of temperature, one ends up predicting a positive skewness for au/az, as is indeed 
shown by the measurements of Tavoularis & Corrsin (1981b). 
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5. Conclusions 
We have conducted a comprehensive study of PDFs of scalar fluctuations and 

their gradients in turbulence with a stable mean background scalar gradient. The 
temperature gradient PDFs exhibit very distinct exponential tails over a wide range 
of turbulent Reynolds number, while the corresponding PDFs of the temperature 
fluctuations show close to Gaussian behaviour. 

We find that strong buoyancy forces do not alter the exponential behaviour of the 
PDF tails. The steepness of the tails is a decreasing function of the turbulent 
Reynolds number and scales approximately as D cc Reit consistent with some data 
at much higher Reynolds number. 

Strong skewness of the a8/az PDF was observed and predicted by a simple 
phenomenological model. This model ignores buoyancy forces, consistent with the 
experimental results, but challenges the interpretations of some previous researchers. 
The joint-Gaussian statistics of w and 8 have been used to predict the highly skewed 
near-exponential shape of the PDF of the buoyancy flux we. 
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